

COPPER CONCENTRATES: SMELTING TECHNOLOGIES UPDATE AND CUCONS MARKET

Jorge Cantallopts

Research and Policy Director Chilean Copper Commission April 2017

@CochilcoChile

CONTENTS

@CochilcoChile

Chilean Copper Commission

INTRODUCTION

- Sulphide copper accounts for almost 80 percent of world mine production and more than 2/3 of Chilean production and its expected to grow its share over the time.
- Smelting arise as a strategic process for copper producer countries. Chile maintains around 9 percent of global smelting production.
- New technology developments and higher competition for copper concentrates motivates this study.

02 BACKGROUND AND CONTEXT

MAIN TECHNOLOGIES

Stage	Input	Output	Technology
Smelting	Concentrate	Matte, smelting slag and gases	Mainly Bath and Flash
Converting	Matte	Blister, converting slag and gases	Mainly Peirce-Smith
Refining	Blister	Anodic Copper, refining slag and gases	Anode Furnace
Slag treatment	Slag	Matte, discard slag and gases	Milling-flotation, Electric furnace, Slag furnace

Recent developments

- Chinese reactors (BBS, SBS), bath technology.
- Chilean packed bed converting technology.
- Ausmelt C3 Converting[®]

CHILEAN CHALLENGE: COMPLEX CUCON

- Mineralogical composition affects concentrates market performance.
- Arsenic compounds arise in northern Chile and some mines in Peru.
- Mixing concentrates from various sources and penalties charges could cost more than 200 \$US/DMT.

SMELTING TECHNOLOGIES

OPERATING SMELTERS

• 57 operating smelter database, accounts for 88 percent of world anode capacity in 2016.

Zone	# Smelters	Anode Capacity 2016 (000' tonne)
Chile	7	2,008
Rest of America	8	2,226
China	16	5,834
Japan	5	1,923
Rest of Asia	5	2,732
Europe	9	2,685
Rest of the World	7	1,643
Total	57	19,051

SMELTING TECHNOLOGIES

CHANGING PREFERENCES

- Until 2000's **flash smelting technology** represent most of the smelting preferences in new operations.
- Since, most of the new smelter prefer bath smelter, mostly Ausmelt/Isasmelt[®] furnaces and Chinese reactors.

@CochilcoChile

COST COMPARISON BY TECHNOLOGY

*Including labour, energy, maintenance, consumables and services.

@CochilcoChile

BATH SMELTING COST DISPERSION

- Great differences between bath technologies.
- Teniente/Noranda technology appears to be less competitive as other bath smelters.

Source: Wood Mackenzie (2016)

[@]CochilcoChile

THE BUSINESS MODEL IMPLICATION

- Integrated smelters appears in the **last position** in terms of costs.
- High-price cycle decrease competitiveness of integrated smelters. Effort and investment to mines to increase
 profitability.

Source: Wood Mackenzie (2016) @CochilcoChile

SMELTING COSTS

- Average direct cash cost was 19 c/lb un 2015. Almost 40% of total capacity was above that cost.
- Energy (power and fuel) is responsable for more than one third of avergae costs.

Direct Cash Costs

On-site Services (c/lb)
Consumables (c/lb)
Maintenance (c/lb)
Total Gross Energy (c/lb)
Labour (c/lb)

Source: Wood Mackenzie (2016) @CochilcoChile

- XXXXXXXXXXXXXXXX
- XXXXXXXXXXXX

05 CONCLUDING REMARKS

CONCLUDING REMARKS

- New developments in China appears attractive but need validation in western countries.
- New smelting capacity would tend to consider bath technology. But not any.
- Change in technology is not the only driver. Non-integrated smelters appears as a better bussiness model.
- Chile in the center of a major challenge: Teniente bath smelting and integrated smelters are less competitive than any other.

THANK YOU!

www.cochilco.cl

